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Carnot efficiencies for moving reservoirs 

P T LANDSBERG and K A JOHNS 
Department of Applied Mathematics and Mathematical Physics 
University College, Cardiff, UK 

MS received 23 March 1972 

Abstract. We consider a standard Carnot cycle, except that the reservoirs (of proper tempera- 
tures TH and Tc) are in uniform motion. Two efficiencies for such cycles exist in the literature. 
Each has the property that it can exceed the usual Carnot efficiency qc = 1 - TJT‘ for a 
class of inertial observers. It is shown in this paper, that a reasonable definition of efficiency 
leads to the usual Carnot efficiency qc for all inertial observers. 

1. Introduction 

For many years now relativistic Carnot-type efficiencies have been available in the 
literature which suggest that it is in these cycles possible to do better than expected 
from nonrelativistic Carnot cycles. To be precise, let uH, uc be the constant velocities 
of hot and cold reservoirs respectively, both judged in some third inertial frame I. 
Let yH (1-u,?,/c2)-”’, and similarly for y c ,  and let TH, T, be the absolute proper 
temperatures of the reservoirs. Then the Carnot cycle efficiency derived in the Planck- 
Einstein-Tolman scheme is (Tolman 1934) 

Since the nonrelativistic efficiency is 

VC = TC/TH (2) 

ifyJJy, < 1, then g, < gp < 1. (3) 

it follows that 

An inertial observer for whom the hot reservoir moves faster than the cold reservoir 
can therefore beat the Carnot efficiency. This strange result is independent of the 
controversial relativistic temperature transformation, since only proper temperatures 
enter in equation (1). It does depend, however, on what is considered to be a sensible 
definition of efficiency. 

The efficiency (Moller 1967 and 1969, Ott 1963) 

YIM = ~-YCT~/YHTH (4) 

if YC/YH < 1, then?, < gM < 1. ( 5 )  

has also occurred, but is subject to the analogous difficulty 

This efficiency has been also discussed by Landsberg and Johns (1970), BiEak (1969) 
and Landsberg (1970). We shall offer arguments in favour of gc  being more meaningful 
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in all frames of reference. This proposal of an efficiency for moving reservoirs which is 
the same for all inertial observers has not been made before, and the detailed arguments 
which lead to the results (1) and (4), as well as to (2) ,  will therefore be presented. 

2. The relativistic Carnot cycle 

The relativistic Carnot cycle analysis is as follows. 

that in frame I the total energy and momentum of the fluid are in state 1 
(i) Start with the working fluid at rest in the rest frame I, of the hot reservoir, so 

E1 = . / ~ . k f o C ~  Pi = ./HMOUH. 

Proper entropy and proper temperature of the fluid are SI,, TIH, the second suffix 
indicating the frame considered (the rest frame in this case). The fluid is accelerated 
to come to rest in the frame of the colder reservoir, the work done on the fluid being 
(yC - yH)M,c2. The fluid is then in state 2.  

(ii) The fluid has in frame I total energy and momentum given by 

E ,  = . / c M o ~ 2  Pz = ycM0u,. 

Its proper entropy is the entropy for state 1 considered in frame IC plus the increase 
in entropy due to passage from state 1 to state 2 ,  considered in frame I, 

Analogously, the entropy of the fluid in frame I, can be written formally as 

s.2H = S l H + ( S l - 2 ) H .  

A quasistatic adiabatic expansion takes place to proper temperature T,, the work done 
on the system being qhAW,, say ( -  1 < qh < 0). The fluid is then in state 3, and an 
explicit expression for 4 is not needed. 

(iii) The total energy and momentum of the fluid in I are now 

E ,  = ~ ~ ( M O C ~  + qhA W2) P3 = (U, C Z ) E , .  

A quasistatic isothermal compression occurs in which heat TcASc is gained by the 
system. But ASc is negative so that heat is given up to the colder reservoir. The work 
done on the system is $AW2 (say), where the magnitude of AW2 has been chosen in 
(ii) and (iii) so that $+I) = 1. In frame I the heat gained by the fluid AQ3, and the 
associated work, AZ, , done on the fluid are, according to the Planck-Einstein-Tolman 
formation, 

so that AQ3 + AZ3 is the total energy, ycTcASc, associated with the heat supplied, 
gained by the fluid as viewed in I. The total energy gained is therefore yc(TcASc + 1,611 W,) 
per cycle. The fluid is then in state 4. 

(iv) The total energy and momentum of the fluid in I are now 

E, = yc(M0c2 + A  W, + TcAS,) P, = ( V , / C ~ ) E , .  
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The fluid is accelerated to come to rest in I,, the work done on the system in frame I 
being 

(YH- YC)(MOc2 f A w2 + TCAsC)* 

The fluid is then in state 5. 
(v) The total energy and momentum of the fluid in I are 

E5 = yH(M& + A W2 + TcASc) P5 = (UH/C*)E,. 

A quasistatic adiabatic compression takes the fluid back to proper temperature TH, 
the work done on the system being vAW, (say). The fluid is then in state 6. 

(vi) The total energy and momentum of the fluid in I is 

E6 = yH(M0~’ + A  Wz + vA W5 + TcASc) P6 = (UH/C2)E6. 

Quasistatic isothermal expansion takes place in which the system gains proper entropy 
ASH and heat THASH, ASH being positive. The work done on the system is PAW, (say) 
where AW5 has been chosen in (v) and (vi) so that v+p = 1. In frame I the heat gained 
by the fluid and the associated work done on the fluid are 

AQ6 = THASJYH Az6 = Y H ( V H / C ) ~  THAS, 

so that AQ6+AZ6 is the total energy, YHTHASH, associated with the heat supplied, 
gained by the fluid as viewed in I. The energy of the fluid in I is now 

E, = yH(M0c2 + A W2 + A  W5 + TcASc + THASH). 

The entropy of the fluid at the end of the whole process is in frame I 

si + + 2 + Asc + s,, 5 +ASH 

and the cyclic nature implies that 

-(S,,z +S4+5) = ASc+ASH. 

Assuming that acceleration does not affect the entropy, the left hand side vanishes and 
one has the result 

ASC = -ASH. (7) 

Q E AQ3 + AQ6 = TcASc/?/c + THAS J Y H .  (8) 

WQ E AZ3fAZ6 = Y~TCASC+~HT,AS,-Q. 

Wa E ( Y H - Y C ) ( A K  + TCASC). 

w, 3 ?HAW, +ycAW2. 

W =  WQ+ Wa+ W, = YH(THASH+TCASC+AW2+AW5)-Q. 

The total heat intake of the fluid in one cycle in frame I is 

The work done on the fluid due to heat flow in one cycle in frame I is 

(9) 
The work done on the fluid due to acceleration in one cycle in frame I is 

(10) 

(1 1) 

(12) 

The work done due to compression and expansion is similarly 

Total work done on the fluid in frame I in one cycle is 
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By the first law in frame I, W + Q  = 0, whence 

THASH+TcASc+AW2+Aw5 = 0 

so that E ,  = E , ,  as required by the cyclic nature of the process. 

3. Various efficiencies 

The standard notion of a Carnot efficiency as work done by the fluid divided by the 
heat supplied by the hot reservoir has to be examined with a view to generalizing it to 
the present case. We present three approaches, the last of which is new, and yields a 
purely thermodynamic efficiency. 

3.1. The Planck-Einstein approach 

The work done per cycle by the fluid in I is given by (12) and the heat supplied is AQ6. 
Hence using (12) and (13) 

Use of (7) yields (1). 

3.2. The Ott-Mdler approach 

First observe that using (10) to (13) 

W, + W, = (YH - yc)TcASc + y H ( A  W2 + A  W5) = - YHTHASH- '/cTcASc. (1 5 )  

One now denies the existence of the work terms WQ due to heat flow so that AQ6 in (14) 
is replaced by the total energy given up by the hot reservoir. Hence using (15) 

Use of (7) yields (4). 

3.3. The present approach 

If one imagines a mechanical engine as being coupled to the Carnot engine, it can 
perform mechanical work W,+ W, on the fluid in frame I in each cycle; put differently 
it can absorb work - (W, + W,) from the fluid. However, the work term WQ is entirely 
generated by heat transfer between fluid and reservoir without involving the engine. 
This work is hence not utilizable, and ought therefore not to appear in the numerator 
of the efficiency. The origin of a work term which does not involve the engine is due to 
the change of rest mass of a fluid by heat transfer. This implies changes of momentum 
in frame I, and hence corresponds to work having been done, though no engine was 
involved. 

Part of the work - (W, + W,) has, however, not come from the thermal energy of the 
hot reservoir, but from the kinetic energy of both reservoirs. This contribution may be 
estimated most simply by imagining an initial process, prior to the Carnot cycle, in 
which both reservoirs are accelerated to their final speeds from a state of rest in I. 
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One also requires a final process in which the reservoirs are decelerated to rest in frame I. 
The work done on the reservoirs in these two processes is 

WR (YH-~)MHOC’ +(Y~-~)M~~~’-{(YH-~)(MHOC*-THASH)+(YC-~)(MCO-TCASC)} 
= (YH- ~)THASH+(YC-~)TCASC. 

The reservoirs have therefore contributed mechanical work - W,, so that the whole 
system has performed mechanical work -(W,+ Wc+ W,). The initial and final state 
of the whole system are now similar mechanical states in I, namely states of zero kinetic 
energy. The only difference is a thermodynamic one, namely the changes in heat content 
of the reservoirs. The source of potentially utilizable energy being the hot reservoir, 
the denominator of the efficiency must be THASH. We therefore arrive at 

- wa- wc- WR TCASC = 1+- 
THASH THASH 

U =  

Use of (7) yields the normal Carnot efficiency for any frame I. 
If one does not wish to add the processes of initial acceleration and final deceleration 

of the reservoirs to rest in I, the above result can still be used. The argument takes 
then the following slightly different form: the work done by the fluid is -(W,+ W,) 
but this amount incorporates the purely mechanical work W, effectively done on the 
reservoirs. This must therefore be subtracted, leaving one again with - ( W, + W, + W,) 
as the work term due to the thermodynamic processes, for use in the numerator of the 
efficiency. 

The fact that the efficiencies qp, qM previously calculated depend on the frame of 
reference I can therefore be attributed to the fact that the mechanical work effectively 
done on the reservoirs during the cycle depends on this frame. It is in agreement with 
physical intuition that reservoir motion, and certainly observer motion, should leave 
the purely thermodynamic efficiency unaltered, as it does in our approach ( Q  3.3) where 
allowance has been made for all mechanical effects. 

Note that q = 0 is a necessary condition for thermal equilibrium if any one of the 
three efficiencies is used. It is not a sufficient condition because thermal equilibrium 
requires Tc = TH and uc = u H .  It appears on the contrary that in the general relativistic 
Carnot cycle (Ebert and Gobel, to be published in General Relativity and Gravitation) 
g = 0 is both necessary and sufficient for thermal equilibrium. 
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